Science Update: UTLS temperature trends: connections with SSTs and implications for water vapour and ozone

Using both satellite observations and chemistry-climate models, C.I. Garfinkel and co-authors examine the zonal structure of tropical lower stratospheric temperature, water vapour, and ozone trends in a recent JGR article. Trends in both the tropical upper troposphere (warming) and lower stratosphere (cooling) have been strongest over the Indo-Pacific warm pool region and much weaker over the western and central Pacific. The model simulations suggest that the sea surface temperatures (SSTs) drive this zonal asymmetry with warming SSTs in the Indian Ocean and warm pool region having led to enhanced moist heating in the upper troposphere, and in turn to a Gill-like response that extends into the lower stratosphere. This has led to a zonal structure in ozone and water vapour trends and subsequently to less water vapour entering the stratosphere. Projected future SSTs drive a similar zonally-structure response in temperature and water vapour, which, for the lower stratosphere are similar in strength to that due directly to projected future CO2, ozone, and methane. The full abstract can be found here.