Variability in upwelling across the tropical tropopause and correlations with tracers

Marta Abalos (1), William J. Randel (2) and Encarna Serrano (1)

(1) Universidad Complutense de Madrid
(2) NCAR

SPARC Workshop on the Brewer-Dobson Circulation
25-29 June 2012 – Grindelwald, Switzerland
Motivation and Context

- **Tropical upwelling magnitude and variability are not well constrained by observations** → uncertainties in trends, forcings of variability...

- **What determines the observed variability in tracers concentration near the tropical tropopause?** → air masses enter the stratosphere mainly through the TTL

Large vertical gradients across the tropical tropopause enhance the effect of upwelling on tracer variability

Our aim:

To investigate variability in upwelling across the tropical tropopause and its influence on tracers (O₃ and CO) on a range of timescales
Motivation and Context

Large seasonal cycles in T, O_3 and CO in this region

What determines the seasonal cycle in O_3 and CO?

- Randel et al. 2007, Schoeberl et al. 2008: vertical structure of amplitude and phase explained by *upwelling* acting on background vertical gradients
- Konopka et al. 2010, Ploeger et al. 2012: *in-mixing* explains O_3 seasonality (mainly from Asian monsoon upper-level circulation) in 3D lagrangian model
Tracer Observations

Time series of **O₃** and **CO** observations (MLS) and **T** (ERA-Interim)

Common variability on seasonal and sub-seasonal timescales

Variability in upwelling and correlations with tracers
What links the variability of temperature and tracers?

\[\frac{\partial T}{\partial t} = -\bar{v} \cdot \frac{1}{a} \frac{\partial T}{\partial \phi} - \bar{w} \cdot \bar{S} + Q \]

\[S \propto \frac{\partial \bar{\theta}}{\partial z} \]

\[\frac{\partial \bar{X}}{\partial t} = -\bar{v} \cdot \frac{1}{a} \frac{\partial \bar{X}}{\partial \phi} - \bar{w} \cdot \frac{\partial \bar{X}}{\partial z} + P - L + \nabla \cdot \mathbf{M} \]

Tendency

Upwelling on background vertical gradient

(Andrews et al. 1987)

(Eddy term neglected in thermodynamic eq.)

- Investigate relation between upwelling and tendencies in tracers and temperature
- Relative contribution of each term to the seasonality

Variability in upwelling and correlations with tracers SPARC BDC June 2012 Grindelwald 4/13
Tropical upwelling estimates

3 estimates:

Residual circulation, Momentum balance, Thermodynamic balance

Main uncertainties:

- **Residual circulation**: \overline{w}^*
 Strongly depends on w from ERA-Interim (no observations)

- **Momentum balance**: \overline{w}_m^*
 Eddy fluxes only include resolved waves (no GW)

- **Thermodynamic balance**: \overline{w}_Q^*
 Q approximated by radiative heating rates from NCAR-CRM (no clouds). No eddy term.
Tropical upwelling estimates

Residual circulation Momentum balance Thermodynamic balance

Correlations: 0.65-0.75 → confidence also in sub-seasonal variability

Variability in upwelling and correlations with tracers SPARC BDC June 2012 Grindelwald
Co-variability of upwelling and tracers: Seasonal cycles

Thermodynamic balance

\[\frac{\partial T}{\partial t} = -\bar{v} \cdot \frac{1}{a} \frac{\partial T}{\partial \phi} - \bar{w} \cdot S + \bar{Q} + \text{residual} \]

Seasonal cycle in upwelling:
Adiabatic cooling

\[\bar{Q} \approx \frac{\bar{T} - \bar{T}_{eq}}{\tau_{rad}}, \tau_{rad} \approx 1 - 2 \text{ months} \]

Response:
Diabatic heating

\[\frac{\partial T}{\partial t} \]

Seasonal cycle in T

Variability in upwelling and correlations with tracers
SPARC BDC June 2012 Grindelwald
Co-variability of upwelling and tracers: Seasonal cycles

Ozone balance

\[\frac{\partial \chi}{\partial t} = -\bar{v}^* \frac{1}{a} \frac{\partial \chi}{\partial \phi} - \bar{w}^* \frac{\partial \chi}{\partial z} + P - L + \text{residual} \]

- Ozone tendency follows seasonality in upwelling
- Chemical production and loss rates (WACCM): semi-annual variability
- Residual: uncertainties in the rest of the terms plus mixing by eddies
Co-variability of upwelling and tracers: Seasonal cycles

CO balance

\[
\frac{\partial X}{\partial t} = -\bar{v} * \frac{1}{a} \frac{\partial X}{\partial \phi} - \bar{w} * \frac{\partial X}{\partial z} + P - L + \text{residual}
\]

- **CO tendency:** seasonal cycle (more noisy) follows seasonality in upwelling
- **Chemical loss** (~100 days damping timescale) + small production (WACCM)
- **Residual:** uncertainties in the rest of the terms plus mixing by eddies
Co-variability of upwelling and tracers: Sub-seasonal fluctuations

\[\frac{\partial T}{\partial t} \quad \frac{\partial O_3}{\partial t} \quad \frac{\partial CO}{\partial t} \]

70 hPa 2010

6 days \(<\tau<1\) year

\[\bar{w}^*, \bar{w}_m^*, \bar{w}_Q^* \]

Common sub-seasonal fluctuations between upwelling and tracer tendencies

Variability in upwelling and correlations with tracers

SPARC BDC June 2012 Grindelwald
Co-variability of upwelling and tracers: Sub-seasonal fluctuations

Statistically significant linear correlations at sub-seasonal timescales
Co-variability of upwelling and tracers: Sub-seasonal fluctuations

Compare to simplified case of upwelling alone controlling variability in T and tracers

→ In this case: \(\frac{\partial X}{\partial t} / \frac{\partial T}{\partial t} = \frac{X_z}{S} = \text{const} \)

Result: Upwelling is not the only driver of variability in T and tracers, but it is a primary forcing
Summary

Ozone and CO from MLS and temperatures from ERA-Interim show common variability near the tropical tropopause.

What is the role of upwelling in forcing this common variability?
3 estimates of upwelling: substantial variability, reasonably good agreement.

- Balance equations highlight the tracers seasonality is mainly driven by upwelling.
- Correlated fluctuations of tracers and upwelling also when isolating fast variability.
Thank you!

Contact:
mabalosa@fis.ucm.es